首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   872篇
  免费   384篇
  国内免费   156篇
化学   569篇
晶体学   8篇
力学   6篇
数学   6篇
物理学   823篇
  2023年   123篇
  2022年   31篇
  2021年   32篇
  2020年   60篇
  2019年   34篇
  2018年   44篇
  2017年   42篇
  2016年   49篇
  2015年   74篇
  2014年   44篇
  2013年   84篇
  2012年   107篇
  2011年   93篇
  2010年   81篇
  2009年   72篇
  2008年   49篇
  2007年   59篇
  2006年   85篇
  2005年   45篇
  2004年   35篇
  2003年   31篇
  2002年   28篇
  2001年   31篇
  2000年   14篇
  1999年   26篇
  1998年   13篇
  1997年   10篇
  1996年   4篇
  1995年   4篇
  1994年   3篇
  1989年   1篇
  1987年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
排序方式: 共有1412条查询结果,搜索用时 44 毫秒
11.
The construction and understanding of synergy in well-defined dual-atom active sites is an available avenue to promote multistep tandem catalytic reactions. Herein, we construct a dual-hetero-atom catalyst that comprises adjacent Cu-N4 and Se-C3 active sites for efficient oxygen reduction reaction (ORR) activity. Operando X-ray absorption spectroscopy coupled with theoretical calculations provide in-depth insights into this dual-atom synergy mechanism for ORR under realistic device operation conditions. The heteroatom Se modulator can efficiently polarize the charge distribution around symmetrical Cu-N4 moieties, and serve as synergistic site to facilitate the second oxygen reduction step simultaneously, in which the key OOH*-(Cu1-N4) transforms to O*-(Se1-C2) intermediate on the dual-atom sites. Therefore, this designed catalyst achieves satisfied alkaline ORR activity with a half-wave potential of 0.905 V vs. RHE and a maximum power density of 206.5 mW cm−2 in Zn-air battery.  相似文献   
12.
Synthesis of cyclohexanone oxime via the cyclohexanone-hydroxylamine process is widespread in the caprolactam industry, which is an upstream industry for nylon-6 production. However, there are two shortcomings in this process, harsh reaction conditions and the potential danger posed by explosive hydroxylamine. In this study, we presented a direct electrosynthesis of cyclohexanone oxime using nitrogen oxides and cyclohexanone, which eliminated the usage of hydroxylamine and demonstrated a green production of caprolactam. With the Fe electrocatalysts, a production rate of 55.9 g h−1 gcat−1 can be achieved in a flow cell with almost 100 % yield of cyclohexanone oxime. The high efficiency was attributed to their ability of accumulating adsorbed hydroxylamine and cyclohexanone. This study provides a theoretical basis for electrocatalyst design for C−N coupling reactions and illuminates the tantalizing possibility to upgrade the caprolactam industry towards safety and sustainability.  相似文献   
13.
Non-oxidative dehydrogenation of propane is a highly efficient approach for industrial preparation of propene that is commonly catalyzed by noble Pt or toxic Cr catalysts and suffers from coking. In this work, ferric catalyst confined in a zeolite framework was synthesized by a hydrothermal procedure. The isolated Fe in the framework formed distorted tetrahedra, which were beneficial for the selective dehydrogenation of propane and reached over 95 % propene selectivity and over 99 % total olefins selectivity. This catalyst had a silanol-free structure and was oxygen tolerant, hydrothermally stable, and coke free, with a deactivation constant of 0.01 h−1. This study provided guidance for the synthesis of structural heteroatomic zeolite and efficient propane non-oxidative dehydrogenation over early transition metals.  相似文献   
14.
The electrical and mechanical properties of graphene-based materials can be tuned by the introduction of nanopores, which are sensitively related to the size, morphology, density, and location of nanopores. The synthesis of low-dimensional graphene nanostructures containing well-defined nonplanar nanopores has been challenging due to the intrinsic steric hindrance. Herein, we report the selective synthesis of one-dimensional (1D) graphene nanoribbons (GNRs) containing periodic nonplanar [14]annulene pores on Ag(111) and two-dimensional (2D) porous graphene nanosheet containing periodic nonplanar [30]annulene pores on Au(111), starting from a same precursor. The formation of distinct products on the two substrates originates from the different thermodynamics and kinetics of coupling reactions. The reaction mechanisms were confirmed by a series of control experiments, and the appropriate thermodynamic and kinetic parameters for optimizing the reaction pathways were proposed. In addition, the combined scanning tunneling spectroscopy (STS) and density functional theory (DFT) calculations revealed the electronic structures of porous graphene structures, demonstrating the impact of nonplanar pores on the π-conjugation of molecules.  相似文献   
15.
The conversion of industrial exhaust gases of nitrogen oxides into high-value products is significantly meaningful for global environment and human health. And green synthesis of amino acids is vital for biomedical research and sustainable development of mankind. Herein, we demonstrate an innovative approach for converting nitric oxide (NO) to a series of α-amino acids (over 13 kinds) through electrosynthesis with α-keto acids over self-standing carbon fiber membrane with CoFe alloy. The essential leucine exhibits a high yield of 115.4 μmol h−1 corresponding a Faradaic efficiency of 32.4 %, and gram yield of products can be obtained within 24 hours in lab as well as an ultra-long stability (>240 h) of the membrane catalyst, which could convert NO into NH2OH rapidly attacking α-keto acid and subsequent hydrogenation to form amino acid. In addition, this method is also suitable for other nitrogen sources including gaseous NO2 or liquidus NO3 and NO2. Therefore, this work not only presents promising prospects for converting nitrogen oxides from exhaust gas and nitrate-laden waste water into high-value products, but also has significant implications for synthetizing amino acids in biomedical and catalytic science.  相似文献   
16.
Inspired by its great success in the photovoltaic field, methylammonium lead iodide perovskite (MAPbI3) has recently been actively explored as photocatalysts in H2 evolution reactions. However, the practical application of MAPbI3 photocatalysts remains hampered by the intrinsically fast trapping and recombination of photogenerated charges. Herein, we propose a novel strategy of regulating the distribution of defective areas to promote charge-transfer dynamics of MAPbI3 photocatalysts. By deliberately designing and synthesizing the MAPbI3 photocatalysts featuring a unique continuation of defective areas, we demonstrate that such a feature enables retardation of charge trapping and recombination via lengthening the charge-transfer distance. As an outcome, such MAPbI3 photocatalysts turn out to achieve an impressive photocatalytic H2 evolution rate as high as 0.64 mmol ⋅ g−1 ⋅ h−1, one order of magnitude higher than that of the conventional MAPbI3 photocatalysts. This work establishes a new paradigm for controlling charge-transfer dynamics in photocatalysis.  相似文献   
17.
Full understanding to the origin of the catalytic performance of a supported nanocatalyst from the points of view of both the active component and support is significant for the achievement of high performance. Herein, based on a model electrocatalyst of single-iridium-atom-doped iron (Fe)-based layered double hydroxides (LDH) for oxygen evolution reaction (OER), we reveal the first completed origin of the catalytic performance of such supported nanocatalysts. Specially, besides the activity enhancement of Ir sites by LDH support, the stability of surface Fe sites is enhanced by doped Ir sites: DFT calculation shows that the Ir sites can reduce the activity and enhance the stability of the nearby Fe sites; while further finite element simulations indicate, the stability enhancement of distant Fe sites could be attributed to the much low concentration of OER reactant (hydroxyl ions, OH) around them induced by the much fast consumption of OH on highly active Ir sites. These new findings about the interaction between the main active components and supports are applicable in principle to other heterogeneous nanocatalysts and provide a completed understanding to the catalytic performance of heterogeneous nanocatalysts.  相似文献   
18.
Synthesis of highly active and durable oxygen evolution reaction (OER) catalysts applied in acidic water electrolysis remains a grand challenge. Here, we construct a type of high-loading iridium single atom catalysts with tunable d-band holes character (h-HL−Ir SACs, ∼17.2 wt % Ir) realized in the early OER operation stages. The in situ X-ray absorption spectroscopy reveals that the quantity of the d-band holes of Ir active sites can be fast increased by 0.56 unit from the open circuit to a low working potential of 1.35 V. More remarkably, in situ synchrotron infrared and Raman spectroscopies demonstrate the quick accumulation of *OOH and *OH intermediates over holes-modulated Ir sites in the early reaction voltages, achieving a rapid OER kinetics. As a result, this well-designed h-HL−Ir SACs exhibits superior performance for acidic OER with overpotentials of 216 mV @10 mA cm−2 and 259 mV @100 mA cm−2, corresponding to a small Tafel slope of 43 mV dec−1. The activity of catalyst shows no evident attenuation after 60 h operation in acidic environment. This work provides some useful hints for the design of superior acidic OER catalysts.  相似文献   
19.
Heterogeneous single-metal-site catalysts usually suffer from poor stability, thereby limiting industrial applications. Dual Pd1−Ru1 single-atom-sites supported on porous ionic polymers (Pd1−Ru1/PIPs) were constructed using a wetness impregnation method. The two isolated metal species in the form of a binuclear complex were immobilized on the cationic framework of PIPs through ionic bonds. Compared to the single Pd- or Ru-site catalyst, the dual single-atom system exhibits higher activity with 98 % acetylene conversion and near 100 % selectivity to dialkoxycarbonylation products, as well as better cycling stability for ten cycles without obvious decay. Based on DFT calculations, it was found that the single-Ru site exhibited a strong CO adsorption energy of −1.6 eV, leading to an increase in the local CO concentration of the catalyst. Notably, the Pd1−Ru1/PIPs catalyst had a much lower energy barrier of 2.49 eV compared to 3.87 eV of Pd1/PIPs for the rate-determining step. The synergetic effect between neighboring single sites Pd1 and Ru1 not only enhanced the overall activity, but also stabilized PdII active sites. The discovery of synergetic effects between single sites can deepen our understanding of single-site catalysts at the molecular level.  相似文献   
20.
How to transfer industrial exhaust gases of nitrogen oxides into high-values product is significantly important and challenging. Herein, we demonstrate an innovative method for artificial synthesis of essential α-amino acids from nitric oxide (NO) by reacting with α-keto acids through electrocatalytic process with atomically dispersed Fe supported on N-doped carbon matrix (AD-Fe/NC) as the catalyst. A yield of valine with 32.1 μmol mgcat−1 is delivered at −0.6 V vs. reversible hydrogen electrode, corresponding a selectivity of 11.3 %. In situ X-ray absorption fine structure and synchrotron radiation infrared spectroscopy analyses show that NO as nitrogen source converted to hydroxylamine that promptly nucleophilic attacked on the electrophilic carbon center of α-keto acid to form oxime and subsequent reductive hydrogenation occurred on the way to amino acid. Over 6 kinds of α-amino acids have been successfully synthesized and gaseous nitrogen source can be also replaced by liquid nitrogen source (NO3). Our findings not only provide a creative method for converting nitrogen oxides into high-valued products, which is of epoch-making significance towards artificial synthesis of amino acids, but also benefit in deploying near-zero-emission technologies for global environmental and economic development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号